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In this paper, we study both the static and dynamic instabilities of submerged and inclined
concentric pipes conveying #uid. The governing equation for the inner tubular beam is derived
under small deformation assumptions. We obtain the discretized dynamical equations using
spatial "nite-di!erence schemes. In the case of steady #ow, both buckling and #utter instabili-
ties are investigated. In the case of pulsatile #ow, we compute the eigenvalues of the mono-
dromy matrix derived from the discretized linear system with periodic coe$cients, and deduce
the dynamical stability information. In addition, for a special case, in which the concentric pipes
have the same length, we compare the dynamic stability results with the corresponding
solutions obtained with the Bolotin method. ( 2001 Academic Press
1. INTRODUCTION

FLUID-CONVEYING PIPES ARE widely used in engineering applications. One of the design
challenges is to avoid pipe buckling and #utter under various operation conditions. Initial
work on such #ow-induced vibration analysis was reported by Ashley & Haviland (1950),
Benjamin (1961a,b), and PamKdoussis (1966). A recent survey of this subject is available in
PamKdoussis & Li (1993) and PamKdoussis (1998).

In the paper industry, one of the key components in approach #ow systems ("ber stock
delivery systems to paper machines) is the so-called silo water-mixing unit, a cylindrical
water storage tank with a constant water level, as depicted in Figure 1. The inner pipe
protruding into the fan pump inlet zone contains a higher consistency "ber stock, and the
concentric outer pipe collects the recirculated stock. In addition to the e!ects on the smooth
operation of impellers, the uniformity of stock consistency, and the minimization of
pressure variations (Wang et al., 1999), the turbulent jets coming out of the concentric pipes
may introduce severe oscillations in the suspended pipes, which can cause structural
damages such as fatigue failure of pipe joints. The #ow-induced oscillations associated with
the submerged and inclined concentric pipes have been studied by Wang & Bloom (1999), in
which the e!ects of various design parameters on the natural frequencies and damping
ratios are discussed.

In this paper, we consider the stability issues related to such pipe systems. In addition to
the divergence (buckling) and oscillatory (#utter) instabilities, we also consider the possible
0889}9746/01/081137#16 $35.00/0 ( 2001 Academic Press



Figure 1. Location of the mixing pipe in the silo unit.
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dynamic instability induced by a pulsating #ow (Chen 1971; PamKdoussis & Issid 1974). Apart
from the traditional approach of the Galerkin}Ritz method, with one or two terms for the
spatial series expansions, and the Bolotin method (Bolotin 1964), we incorporate, in this
work, the spatial "nite di!erence approach presented by Wang & Bloom (1999) along with
a direct time integration for the computation of the monodromy matrix. The advantage of
"nite-di!erence schemes is to avoid the use of C1 "nite elements or mixed formulations. An
elaborate discussion on this subject is available in Bathe (1996) and Zienkiewicz (1977).
Based on the eigenvalues of the monodromy matrix, we then deduce the dynamic stability
information corresponding to the presence of periodic coe$cients. Of course, the physical
problem discussed in this paper also possesses some novelty, in particular, discontinuous
coe$cients introduced by di!erent pipe lengths.

We begin with the mathematical model and its corresponding governing equation in
Section 2, and discuss the numerical procedures for the spatial discretization and the
construction of the monodromy matrix in Section 3. We present in Section 4 numerical
results for a particular pipe system design with both steady and pulsatile #ows. As a further
check on the numerical results obtained in Section 4, we also o!er, in Section 5, an
analytical study based on the Bolotin method to compare with the numerical Floquet
approach, for a particular pipe system design.

2. THE MATHEMATICAL MODEL

Figure 2 shows the mathematical model of the suspended concentric pipe system with the
longitudinal direction being that of the x-axis. We assume that the outer pipe is rigid and
consider the inner pipe to be a tubular beam. We note that both pipes are submerged in
water, and continuous #ow between the two concentric cylinders only occurs in the domain
04x4¸4l. For the pulsatile inner pipe #ow we have;

i
";M

i
(1#e cos u

o
t), where;M

i
, e,

and u
o

represent the mean value of the averaged inner pipe #ow velocity, the velocity
perturbation magnitude, and the perturbation frequency, respectively. According to the



Figure 2. The mathematical model of the suspended concentric piping con"guration.
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discussion in PamKdoussis & Issid (1974), the inertia term oA
i
(L;

i
/Lt) needs to be added to

the axial force equilibrium of the internal #ow. By the chain rule, we have for the transverse
inertia e!ects
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#
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i
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. (1)

Moreover, we denote the free surface level measured from the origin (0, 0) ("xed boundary
location for the suspended pipes) as y

o
, such that the hydrostatic pressure at the tip of the

submerged beam (x"l) is given by p6 "ogy
o
!ogl sinh; thus, we obtain the expression for

the hydrostatic pressure of the external #uid:

p
e
"(l!x)og sinh!yog cos h#pN . (2)

According to PamKdoussis (1973), Hannoyer & PamKdoussis (1978), and PamKdoussis &
Pettigrew (1979), we also have the following expression for the hydrodynamic pressure in
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the concentric #ow region:

p
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o
;2

e
C

f
h(x), (3)

where the friction coe$cient C
f

has, as discussed by Taylor (1952), PamKdoussis (1966), and
Schlichting (1987), di!erent values in the con"ned and uncon"ned regions, i.e.,
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(6)

As discussed by PamKdoussis (1966, 1973) and Hannoyer & PamKdoussis (1978), the external
#ow exerts on the tubular beam (inner pipe) the following viscous forces per unit length in
both transverse and longitudinal (axial) directions and more elaborate illustration of forces
acting on the inner pipe is available in Wang & Bloom (1999):
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where y stands for the transverse displacement of the tubular beam.
De"ning the functions p"1#0)4(x

o
/¸)C1

f
and a"0)4C1

f
/p for the con"ned external

#ow region, we obtain the external #uid inertia forces
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Following the derivation by Wang & Bloom (1999), we obtain the explicit expression for
the tension ¹, based on the assumption that p
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of the inner pipe, we obtain
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so that
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Thus, in a manner similar to the derivation presented by Wang & Bloom (1999), we "nd
the following governing equation for y (x, t):
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where the coe$cients are given by
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Notice that for the case of a clamped (or built-in) boundary condition at x"0, we have

y (0, t)"0,
Ly (0, t)

Lx
"0, (15)

while for the free end of the tubular beam at x"l, we have
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We also recognize that the coe$cients c
1

to c
6

can be variable depending on the position
x. To circumvent the discontinuity at the location x"¸, where the con"ned and uncon-
"ned external #ow domains are separated, we prescribe a nodal point at that location. Of
course, for pulsatile #ow, only the coe$cients c

2
and c

3
are periodic in time with the period

¹
o
"u

o
/(2n).

Since we focus our attention on the stability issues, we only retain in equation (13) the
homogeneous part of the governing equation.

3. STABILITY ANALYSIS

We employ the standard "nite-di!erence discretizations to replace the partial di!erential
equation (13) with a set of ordinary di!erential equations with respect to time. Equivalent
di!erence schemes are also used for the boundary conditions in equations (15) and (16). We



Figure 3. Finite di!erence stations on the tubular beam.
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de"ne the solution variable y (x, t) at the spatial grid (or nodal) point i as >i (t) (depicted in
Figure 3), and its corresponding time derivative as >Q i (t). Using an equal spacing h between
"nite di!erence stations, and employing the same "nite-di!erence approximations as used
by Wang & Bloom (1999), we obtain the discretized characteristic equation for node
i (14i4N):
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As the variable coe$cients c
1
to c

5
in (14) could be functions of x they are denoted as ci

1
to

ci
5

at the nodal point i. Therefore, equation (13) becomes

MYG #CY0 #KY"0, (18)

where Y is the solution vector, and M, C, and K stand for the mass, damping (including
gyroscopic terms), and sti!ness algebraic coe$cient matrices, respectively. For the steady
#ow case, i.e., e"0, if we assume a characteristic solution Y"e*utY< , where Y< represents the
mode shape with the natural frequency u"2nf, the stable system corresponds to
Im(u)50 with Re (u)O0. We de"ne the buckling instability as Re (u)P0 with
Im (u)50, and the #utter instability as Im (u)(0 with Re (u)O0. Moreover, having the
set of second-order ordinary di!erential equations in (18), for the case of pulsatile #ow, we
now introduce a new solution vector q"(Y, Y0 ), and replace (18) with the following system
of 2N "rst-order di!erential equations with periodic coe$cients:

q5 "A (t)q, (19)

where

A (t)"C
0 I

!M~1K !M~1CD .

Of course, the stability analysis of the trivial solution of equation (19) also applies to the
stability of solutions near the "xed point of the nonlinear dynamical system with the
Jacobian matrix A (t). For this nonautonomous system, the matrix A (t) has a period ¹

o
.

According to the Floquet theory, the fundamental matrix satisfying equation (19) can be
expressed as the function of a periodic nonsingular matrix Q (t), with the period ¹

o
, and

a constant matrix D,

q (t)"Q (t) etD. (20)

Therefore, the eigenvalues of the matrix D, denoted by b, determine the stability of (19),
and we obtain

q (t#¹
o
)"q (t)N, (21)

with the monodromy matrix N"e¹
o
D.
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The eigenvalues of the matrix N, denoted by j, are related to the eigenvalues b of the
matrix D by

b"
1

¹
o

(log DjD#i arg j), i"J!1. (22)

It is clear that only the real part of b is uniquely de"ned. If we assign

q (0)"I, (23)

where I is the identity matrix, we obtain

N"q (¹
o
). (24)

In order to derive the monodromy matrix N, we numerically integrate equation (19),
together with the initial condition (23), using the second-order Runge}Kutta method, i.e.,

q (t#*t)"q (t)#*t (k
1
#k

2
)/2, (25)

where

k
1
"A (t) q (t),

k
2
"A (t#*t) (q (t)#*tA(t)q (t)).

The ith column of the matrix N corresponds to the numerical solution of (19) with the ith
column of the identity matrix I as the initial condition. In general, due to the explicit nature
of the Runge}Kutta scheme, the construction of the monodromy matrix can be very
expensive. The detailed discussion on the selection of a proper time step is presented by
Wang & Hale (2001).

4. NUMERICAL RESULTS

We study the stability issues for a particular pipe system design with the following physical
parameters: o"1000kg/m3, m"2)12kg/m3, l"2)392m, ¸"1)135m, x

o
"2)4m,

y
o
"6)155m, R

i
"0)02m, R

o
"0)025m, R

e
"0)035m, g"9)8m/s2, E"70GPa,

C1
f
"0)004n, C2

f
"0)5nR

i
/l, and C

b
"0)0125n. Note that the selection of C2

f
is based on the

assumption in PamKdoussis (1966). In particular, C2
f

is de"ned as c
T
n/4 according to

PamKdoussis (1966), and from the assumption in the same reference, ec
T

is equal to 1, with
e"0)5l/R

i
.

4.1. STEADY-FLOW CASES

For the steady-#ow cases, Figure 4 shows the loci of the fourth mode in the complex u plane

as a function of the dimensionless velocity u"JoA
i
/EI;

i
l, i.e., u"0)0238;

i
.

As illustrated in Figure 4, for the length ratio ¸/l"0)4745, without friction e!ects, there
is a small #utter range, which disappears with the addition of friction terms. This indicates
that friction forces have positive e!ects on avoiding #utter instability. Notice that the
disappearance of the #utter does not occur in a di!erent mode. In fact, we "nd that the
fourth mode is the mode in which, for a su$ciently high value of u, #utter instability can
occur. It is interesting to observe that higher modes are often more prone to #utter than
lower modes. This phenomenon is consistent with the results in PamKdoussis (1998), and
moreover, stays the same as we vary the parameters.



Figure 4. Flutter instability of the fourth mode with ;
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In addition, Figure 4 also shows that the higher the inner and outer pipe length ratio, the
less likely it is that #utter will occur, which might be attributed to frictional e!ects within the
concentric #ow region.

As depicted in Figure 5, we also reach the conclusion that friction forces have positive
e!ects on delaying the buckling instability. However, the higher the inner and outer pipe
length ratio, the more susceptible the inner pipe is to buckling. This is of course in contrast
to the observation with respect to #utter instability and suggests that the length e!ects are
more signi"cant than the frictional e!ects.

Figure 5 also shows that as we approach the buckling points, the decreasing rate of the
imaginary component of complex frequency becomes large, and more points are needed to
obtain smooth curves around the buckling points.

A more elaborate study on the dependence of the critical buckling velocity u
c
on the pipe

length ratio, friction, and gravitational forces indicates, as shown in Figure 6, that there
exists a transition region around ¸/l"0)6. Considering the fact that the natural frequency
results in Wang & Bloom (1999) are smooth around ¸/l"0)6, we conjecture that the mode
shape e!ect is unlikely to be the cause of the discontinuity. Nevertheless, the physical cause
for such a discontinuity is still not clear.

Another important observation worth mentioning is that the e!ects of gravitational
forces are not as signi"cant as those of frictional forces; this fact is also consistent with the
calculations of the natural frequencies presented in Wang & Bloom (1999).



Figure 5. Buckling instability of the "rst mode with ;
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4.2. UNSTEADY-FLOW CASES

For the pulsatile-#ow cases, we denote u
oi

as the ith natural frequency of the corresponding
steady-#ow case with both gravity and friction e!ects. As discussed by PamKdoussis & Pettigrew (1979),
Noah & Hopkins (1980) and Ariaratnam & Namachchivaya (1986), although the numerical Floquet
analysis is lengthier than the Bolotin method with two expansion terms, it includes both
the parametric (u

o
/u

oi
"2/k, k"1, 2, 3,2) and combination instabilities (u

o
/(u

oi
!u

oj
)"1/k,

k"1, 2, 3,2), and is convenient to implement.
Figure 7 shows the dynamic instability regions for di!erent cases. It is clear from the "gure that the

gravitational e!ects are not signi"cant, which is consistent with the natural frequency calculations in
Wang & Bloom (1999). In fact, in the dynamic stability analysis, both gravitational and friction e!ects
are not as signi"cant as the inner and outer pipe length ratio ¸/l. Notice that this dynamic instability
result with respect to friction is quite di!erent from the conclusion of the static instability analysis.

It is also interesting to note, based on Figure 7, that the combination instability in this case does not
show up within the frequency range 1)7u

02
&2)7u

02
. Moreover, the dynamical instability or reson-

ance is also selectively associated with only some of the modes, and the higher the perturbation, the
more likely it is that the dynamical instability will occur.



Figure 6. Critical buckling velocity versus the outer pipe length with;
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without friction e!ects; s, with gravity and friction e!ects; ], without gravity e!ects.
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5. BOLOTIN METHOD

In this section we consider the case of a pipe system with the same inner and outer pipe
lengths. To simplify the expression for the eigenfunctions satisfying the beam equation and
its associated boundary conditions, we ignore frictional forces, the axial load at the tip of the
inner tubular beam, and, in general, the gravitational forces. As a consequence of equa-
tion (12), the forms of G

0
and G

1
, and the assumed structure of the pulsatile inner pipe #ow,

we have
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t, (26)

while the coe$cients c
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in equation (14) take on the following form:
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Figure 7. Dynamic instability regions. (u
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In addition, we may rewrite c
2

and c
3

in the form
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and obtain the following governing partial di!erential equation:
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We express the solution of (29) in the form of a series
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=
+
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where /
j
is the jth eigenfunction corresponding to eigenvalue j
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Moreover, the eigenvalue j
j
satis"es the transcendental algebraic equation (Blevins 1979)
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Of course, we also have the following orthogonal relations:
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Substituting equation (30) into (29), multiplying the resulting equation by /
k
(x), and

integrating from x"0 to x"l, we obtain the following equation:

c
4
aK
k
#

=
+
j/1

M(c6
3
#c8

3
ecosu

o
t)o

kj
a5
j
#(c6

2
#c8 1

2
ecosu

o
t#c8 3

2
e2cos2u

o
t)p

kj
a
j

#c8 2
2
eq

kj
a
j
sinu

o
tN#c

1
j4
k
a
k
"0, (36)

where

k
k
"P

l

0

/2
k
dx, o

kj
"P

l

0

/
k
/@

j
dx/k

k
,

p
kj
"P

l

0

/
k
/@@
j
dx/k

k
, q

kj
"P

l

0

(x!l)/
k
/@@
j
dx/k

k
. (37)

Notice that some analytical expressions exist for expressions (37), but in this work we
choose to use numerical integrations. As in Ginsberg (1973), we select a two-term series
expansion in (30), i.e., j"1, 2. In this manner, we obtain the coupled equations for a

1
(t) and

a
2
(t), which from equation (36) result in the following:

c
4
aK
1
#(cN

3
#c8

3
ecosu

o
t) (o

11
a5
1
#o

12
a5
2
)#(cN

2
#cJ 1

2
ecosu

o
t#cJ 3

2
e2cos2u

o
t) (p

11
a
1
#p

12
a
2
)

#c8 2
2
e sin u

o
t (q

11
a
1
#q

12
a
2
)#c

1
j4
1
a
1
"0, (38)

c
4
aK
2
#(cN

3
#c8

3
ecosu

o
t) (o

21
a5
1
#o

22
a5
2
)#(cN

2
#c8 1

2
ecosu

o
t#cJ 3

2
e2cos2u

o
t) (p

21
a
1
#p

22
a
2
)

#c8 2
2
esinu

o
t (q

21
a
1
#q

22
a
2
)#c

1
j4
2
a
2
"0. (39)



STABILITY OF CONCENTRIC PIPES CONVEYING FLUID 1149
The coe$cients in (38) and (39) are periodic with the period ¹
o
and the transition from

stability to instability is marked by the existence of a solution with the period ¹
o
or 2¹

o
.

The solutions associated with the primary instability at u
o
/u

oi
"2/k, k"1, 3, 5,2

correspond to solutions with the period 2¹
o
and are constructed from the Fourier series as

a
i
(t)"

=
+

j"1, 3, 5,2
Grijcos
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2
ju

o
t#s

ij
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2
ju

o
tH, i"1, 2, (40)

while solutions associated with the secondary instability at u
o
/u

oi
"2/k, k"2, 4, 6,2

correspond to solutions with the period ¹
o
and are constructed using the Fourier series:
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The primary principal instability boundary is generated by solutions of the form (40) with
j"1. Thus, truncating the series in equation (40), as in Ginsberg (1973), we have
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with r
i
,r

i1
and s

i
,s

i1
. Substituting equation (42) into (38) and (39), using various

trigonometric relations, and collecting the coe$cients of the linearly independent terms
sin 1/2 u

o
t and cos 1/2 u

o
t, we obtain the system of algebraic equations
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The existence of the solution of the form (42) corresponds to detM
ij
"0. Using this

criterion, we may obtain the dynamic stability information associated with various design



Figure 8. Results derived from the Floquet theory and the Bolotin method. (Eleven grid points for spatial
discretization.) #, Bolotin method; s, Floquet theory.
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parameters, such as e and u
o
. Figure 8 shows that the results derived from the Bolotin

method and the Floquet theory match. The explanation for the 10% di!erence in Figure
8 might be attributed to the limited number of terms in the series expansion, which in this
case is 2. It is also suggested by Figure 8 that the higher the excitation frequency the less
accurate the Bolotin method becomes. This observation in fact is very much consistent with
the fact that, to have the same accuracy, for higher frequencies, more terms of series
expansion must be used.

The advantage of using the Bolotin method is, of course, its simplicity and e$ciency;
however, when considering more terms in the series expansions, a derivation based on the
Bolotin method can be extensive, and in addition, the Bolotin method is limited to the
parametric instability analysis (PamKdoussis & Sundararajan 1975).

6. CONCLUSIONS

Based on the mathematical model for a submerged concentric pipe system with both
uncon"ned and con"ned external #ows, we have studied both static and dynamic stability
issues related to the pipe system design. We have presented the ranges of both buckling and
#utter instability for pipes conveying steady #ows for a case study. For the pipes conveying
pulsatile #uids, we have also presented two methods to determine the regions of dynamic
instability. We "nd that the outer pipe length is a more important design factor than gravity
(relating to inclination angle and submergence depth) and friction. For the inner pipe
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conveying pulsatile #ow, the lowest critical perturbation frequency is nearly twice the
second system's natural frequency. However, we note that for current pipe system designs
with reasonable #ow rates, the concentric pipe system is stable. The procedure implemented
in this paper clearly shows much promise in assisting the design for the silo piping system.
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APPENDIX: NOMENCLATURE

A cross-sectional area of the tubular beam, n (R2
o
!R2

i
)

A
i

inner cross-sectional area of the tubular beam, nR2
i

A
o

outer cross-sectional area of the tubular beam, nR2
o

D
o

outer diameter of the inner pipe
E elastic modulus of the pipe
g gravity
I area moment of the tubular beam, n (R4

o
!R4

i
)/4

l inner pipe length
¸ outer pipe length
p
i

internal pipe pressure
p
e

external pipe pressure
R

e
inner radius of the outer pipe

R
i

inner radius of the tubular beam
R

o
outer radius of the tubular beam

¹ axial tension
;

e
averaged turbulent #ow velocity for the external pipe #ow

;
i

averaged turbulent #ow velocity for the internal pipe #ow
x
o

entrance distance associated with the turbulent boundary layer

Greek letters
e internal pipe #ow velocity perturbation
h inclination angle
o internal and external #uid densities
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